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1. Introduction 

Robust and efficient autonomous exploration capabilities are a vital component for 
robot platforms employed in remote and dangerous environments such as providing 
humanitarian aid in disaster relief scenarios. In such scenarios, there can be limited 
knowledge of the area and that knowledge may be unreliable. There can also be 
time constraints, putting an emphasis on the efficiency and accuracy of the robot’s 
capabilities. In the often-used example scenario of exploring a building after an 
earthquake, the robot must be able to map and navigate around shifted hallways 
and blocked doors to quickly locate survivors. 

This report documents the implementation of an autonomous exploration system 
designed to quickly and accurately explore and map an unknown area. The system 
identifies candidate exploration goals using frontiers, then uses a search-based 
lattice planning algorithm similar to that used by Cohen et al.1 to generate potential 
exploration routes. Each route is evaluated based on the predicted entropy change, 
cost to travel the route, and potential loop closures that can increase the accuracy 
of the map. Loop closure describes the ability of the robotic system to increase the 
accuracy of its internal localization based on revisiting a previously explored 
location. This process reduces the error that can accumulate from inaccuracies in 
sensor data as the robot constructs the map. 

As the robot continues to take sensor measurements and unknown grid cells become 
known, the entropy of the map is reduced. Because the system prioritizes 
exploration to areas where the most information can be gained, the rate of 
exploration is accelerated. In this report, we compare our approach against a 
baseline nearest proximity frontier selection method. 

The frontier-based exploration strategy was first described by Yamauchi.2 In this 
exploration strategy, frontiers are defined as regions that lie on the boundary 
between open and unexplored regions on an evidence grid. A robot employing this 
strategy will make observations at these frontiers, measuring unknown grid cells 
with its sensors until only open grid cells border obstacle cells and unknown cells 
are only found on the outside of these obstacles. This strategy is referred to as the 
“baseline” technique in this report. 

Exploration and mapping were linked via an information gain metric from 
Bourgault et al.3 by choosing control policies that maximize the information in an 
occupancy grid and minimize the entropy in the vehicle pose and map features. In 
Moorehead et al.,4 map traversability is considered in addition to multiple sources 
of information, and the total path cost is minimized. 
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In Sim et al.,5 the authors explicitly consider optimizing the quality of the map in 
addition to the speed with which a map is collected by autonomous exploration. 
This is done by searching for plans that will reenter previously visited locations via 
a path that will minimize positional uncertainty. In Makarenko et al.,6 the authors 
consider the localizability of landmarks when deciding on what area to visit next.  

Many of these ideas were brought together by Stachniss et al.,7 who described a 
system featuring an exploration strategy that maximized occupancy grid 
information while minimizing map entropy. The system documented in this report 
uses frontiers as well as predicted locations for loop closures from work 
documented previously8 as test locations to evaluate a utility function based on 
occupancy grid information, map entropy, and path cost. This report is primarily an 
extension of Stachniss et al.7 who used modern pose graph smoothing simultaneous 
localization and mapping (SLAM) techniques to predict the effect of planned 
trajectories on map entropy, including the effect of predicted loop closure.  

Other work9,10 has detailed an approach to exploration that uses entropy metrics for 
path selection in addition to revisiting actions to improve localization. Our 
technique is most similar to this work; the key difference being that we use the 
iSAM2 nonlinear optimization engine to efficiently compute the effect of potential 
loop closures, which are discovered by executing kinematically feasible 
trajectories, while the previous work9,10 used an approximate sparse information 
filter to compute the value of the information, which can be added through loop 
closure while following a probabilistic road map. It is not clear from Valencia et 
al.9 if their approach is scalable to areas larger than a few rooms, whereas our 
approach has been evaluated on medium-sized floor plans in this work, and our 
mapping system on large buildings in Rogers et al.11 

Here, we document a method of autonomous exploration that uses an information 
gain metric and SLAM techniques to map an unknown area. We show that this 
technique improves the efficiency and accuracy of existing techniques and that it 
can be implemented on widely available robot hardware. 

Descriptions of the software components used in this work are presented in  
Section 2. Exploration experiments in 4 different simulated environments in 
addition to a real-world experiments are described in Section 3. Finally, conclusions 
and future plans are described in Section 4. 
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2. System 

2.1 Exploration Frontiers 

The system regulates its autonomous exploration through a series of decisions to 
select from candidate frontiers and navigation paths. Frontiers are identified as 
areas that, by some metric, are beneficial for the system to explore. In general, 
exploration frontiers are locations that the system has identified as areas from which 
the robot can take measurements and obtain information on unexplored map areas. 
Such frontiers can be considered candidates for navigation goals, serving to drive 
an autonomous system. By continually moving to these navigation goals and taking 
measurements, the system works to explore and map the unknown area. 

Exploration frontiers can be described as areas that lie on the boundary between 
known and unknown space. This type of frontier was initially described by 
Yamauchi.2 Maps can be represented as occupancy grids, dividing the floorplan 
into cells. Each cell is classified as Clear if the area is free, Occupied if the area is 
an obstacle, or Unknown if the area is unexplored. Frontiers are computed by 
identifying all occupancy grid cells that are marked Unknown and are immediately 
adjacent to at least 1 grid cell, which is marked Clear. Groups of these boundary 
cells are clustered; clusters that consist of a sufficient number of cells are selected 
as exploration frontiers. 

The system chooses an exploration path by evaluating candidate paths to each of 
the identified exploration frontiers. Candidate paths are evaluated according to the 
expected information gain from sensor measurements taken along the path and at 
the candidate frontier. The path that has the greatest reduction in entropy is 
identified as the best navigation path. 

2.2 Information Gain Measurement 

Entropy is a measurement of uncertainty in the state of a system. A completely 
unknown environment is at a maximum entropy state, as each grid cell is Unknown 
and can be said to be either Clear or Occupied with equal probability. As the robot 
explores the area and takes measurements on these grid cells, the system becomes 
known and the probability of a measured cell being Clear collapses to 1 (if the cell 
contains no obstacle) or 0 (if the cell contains an obstacle). 

The system endeavors to put the entire area into a low entropy state. That is, it takes 
measurements of grid cells that are Unknown or have an Occupied probability of 
0.5. Therefore, a navigation path that measures and maps a large amount of 
unexplored environment is desirable. The entropy of a single cell Hc within the 
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occupancy grid can be calculated according to Eq. 1, where p(c) represents the 
probability of occupancy of cell c. The entropy Hog of an occupancy grid M is given 
by Eq. 2, and is simply a sum across all cells within the grid: 

 ))(  (1 log ))(  (1  )(log )(  )( cpcpc pcpCH c −−−−= . (1) 

 ∑
∈

−−+−=
Mc

og cpcpc pcpMH ))(  (1 log ))(  (1  )(log )(  )( . (2) 

As the robot moves through the environment, it collects data through range sensors 
such as LiDAR. The robot platform was equipped with a Hokuyo UTM-30LX-EW 
laser range scanner that collects data in a 240°, forward-facing arc. Each individual 
ray was modeled according to the probabilistic sensor model described in Thrun et 
al.12 The model accounts for inherent inaccuracies in beam-based range finders, 
returning the highest probability at ranges near the ground-truth distance. This 
distance is calculated through a ray casting operation in the current occupancy grid, 
stopping at the nearest obstacle. The sensor model is a probability distribution over 
range p(r), which is instantiated with this distance. The expected information gain 
E[I] for each ray can be calculated from the sensor model and the cell values 
resulting from the corresponding ray trace. Equation 3 shows that E[I] is the 
integration along the ray trace of the probability p(r) that the sensor returns a range 
value $r$ multiplied by the entropy of the cell at this range Hc(r): 

 ∫= r
)()( ][ rHrpIE c . (3) 

The expected information gain is the metric of primary interest when establishing 
exploration routes. 

2.3 Mapping 

Building a map of the environment is often the ultimate goal of an exploration 
system. The mapping component of the exploration system, called OmniMapper, 
fuses odometry and laser sensor measurements using square-root smoothing and 
mapping ( )SAM ,13 implemented in the GTSAM library developed at The  
Georgia Institute of Technology. Specifically, the iSAM214 implementation within 
GTSAM is used as the map optimizer in this work. OmniMapper has been used in 
prior work to build maps of indoor and outdoor environments11 and for multirobot 
mapping.15–17 

OmniMapper builds a pose graph where nodes are poses along the robot’s trajectory 
and edges are measurements between poses. OmniMapper uses the GTSAM library 
to solve the pose-graph, which consists of iterative closest point (ICP)18 scan 
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matching as well as robot odometry. This enables operation in more general 
environments, both cluttered and austere. The ICP algorithm used to make relative-
pose and loop-closure measurements is canonical scan matching (CSM).19 This 
algorithm makes point-to-line measurements to eliminate error caused by limited 
aperture and handle sparse measurements. 

ICP algorithms consist of a 2-phase process, which is repeated until convergence. 
Two point clouds are given as inputs to the algorithm. For relative-pose 
measurements, these 2 point clouds come from the robot’s current and immediately 
previous laser scan. For loop-closure measurements, these 2 point clouds are the 
robot’s current and a cloud taken from the same area but from a previous visit. In 
the first phase of the ICP algorithm, putative point matches are determined by 
selecting closest matches for each point in the first cloud in the second cloud. In the 
second phase of the ICP algorithm, these putative point matches form a set of 
measurements, which is solved in closed form to find the relative pose that best 
brings these 2 clouds into alignment. This transformation is then applied to the first 
set of input points. A new set of putative point correspondences are selected using 
this updated point cloud, and the algorithm repeats until convergence, when the set 
of corresponding points is unchanged. 

2.4 Loop Closures 

In addition to the uncertainty related to the unexplored portion of the environment, 
there exists uncertainty in the instrumentation and interpretation of data within the 
robotic platform. Many robotic mapping systems rely on sensor measurements such 
as odometry readouts, inertial measurement units, and LiDAR scanners to 
determine their own position and interpret the environmental data measurements. 
Without proper localization, constructed maps of the environment will contain 
errors, such as slanted hallways. 

The system incorporates the ability to relocate itself within its internally constructed 
map by interpreting sensor data from the laser range scanner and the odometry 
sensors. By revisiting areas that have already been mapped, the system can resolve 
conflicts between observed and expected sensor readings, also known as loop 
closures. The ICP procedure described in Section 2.3 is used to determine the 
relative pose between the robot’s current and previous position when revisiting a 
previously mapped location.  

As the robot builds a map of an environment, the robot’s pose uncertainty will 
increase unless loop-closure measurements are made. This uncertainty can be 
quantified by computing the entropy of the robot’s a posteriori pose estimate. The 
robot’s pose history along its trajectory is captured by the mapping operation 
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detailed in Section 2.3. The marginal distribution can be efficiently computed using 
the iSAM2.14 The entropy of the most recent trajectory element is a measurement 
of the robot’s pose uncertainty in the map, is computed with Eq. 4. In this 
expression, the marginal covariance on pose i is given by Σii, and Hp is the 
differential entropy of the robot’s pose: 

 ∑= iip eH 3)(2 log
2
1 π . (4) 

As the robot explores its environment, it considers a small set of potential 
destinations before selecting 1 destination as the next exploration goal. The effect 
of selecting each potential destination as the next goal with respect to the trajectory 
entropy expression in Eq. 4 can be approximated. For each potential destination, a 
plan is computed, which will reach that destination with a search-based lattice 
planner (Search-based Planning Laboratory [SBPL]).1 The effects on the mapper 
trajectory of following this plan are hypothesized by appending trajectory pose 
variables along the plan. Edges are added between adjacent trajectory pose 
variables, and loop-closure edges are added whenever the robot’s planned trajectory 
gets close to a previously visited area. When these loop-closure edges are added to 
a hypothesized trajectory based on a plan, the entropy of the mapper can be reduced. 

2.5 Utility Function 

The system calculates the utility of a potential path using Eq. 5. ΔHM(p) is the 
change in map entropy, Eq. 2, as a result of traveling path p while taking sensor 
measurements. ΔHX(p) is the change in entropy from the pose change, Eq. 4, over 
path p, weighted by constant k. This constant can be adjusted to increase or decrease 
favor of loop closures. C(p) is the cost to travel along the path, which is a function 
of the robot: 

 
)(

)(  )( )(
pC

pHkpHpU XM ∆+∆
= . (5) 

3. Experimentation 

The exploration system was evaluated in both simulated and real-world 
environments. Experimentation in the simulation world was performed in a number 
of different environments designed to evaluate the system under a variety of 
floorplans. 
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3.1 Simulation 

The information-based system was evaluated against a baseline system using a 
proximity frontier selection method in 2 experiments. The first experiment was 
meant to evaluate the efficiency of the algorithms by recording the occupancy grid 
entropy of the map as a function of time. Four maps of varying environments, 
depicted in Fig. 3, were used to enforce robust performance of both algorithms. The 
second experiment evaluated the ability of the system to form an accurate map. This 
experiment introduced noise to the simulated sensor measurements of the robot, 
causing mapping errors and making it more difficult to build a coherent, accurate 
map. In this experiment, forming loop closures would be vital in creating an 
accurate map. 

In real-world operation, the system must be flexible in its ability to expand the map 
beyond the current limitations. However, the map is stored as a rectangular grid in 
memory. As the map expands, the overall entropy of the system increases because 
the system must allocate many new, unknown cells to maintain the rectangular map. 
This increases in entropy is contrary to the systematic goal of entropy minimization. 
In practice, this does not affect the system calculations because the calculation for 
expected entropy change does not include the addition of unknown cells. However 
for evaluation purposes, the simulation allocates a large number of unknown cells 
to the entropy calculation, padding the map to a size that is large enough to cover 
the map. By using this padding method, the entropy value should have an overall 
decreasing trend across each trial. 

3.2 Robotic Platform 

The exploration system was implemented on 2 different robotic platforms: the 
PackBot designed by iRobot and the Jackal designed by Clearpath Robotics. The 
PackBot, shown in Fig. 1, is a man-portable robot system. The robot was equipped 
with additional computing hardware to increase the capabilities of the platform. 
Similarly, the Jackal is a wheeled, man-portable robot system. Both robots were 
equipped with a Hokuyo UTM-30LX-EW scanning laser range finder with a motor 
controller designed to continually nod the sensor. This sensor provides  
3-dimensional point cloud data to the platform. 
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Fig. 1 PackBot used to perform the experiments 

Experimentation on the PackBot platform has primarily been carried out on an 
informal basis intended to show “proof of concept” in integrating the decision-
making system on to a real-world robotic system. As shown in Fig. 2, the robot was 
used to explore and map the second floor of a building located in a military and 
rescue training facility. The Jackal platform was used to collected experimental data 
designed to evaluate the exploration system. Figure 3 shows the simulation 
environments.  

 

Fig. 2 PackBot exploring an abandoned pediatric mental hospital, currently part of a 
military and rescue training facility 
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(a) Office Floor (b) Cubicle Farm 

 

 
(c) Underground Lair (d) Reactor Core 

Fig. 3 Simulation environments used to perform the exploration experiments 

3.3 Simulation Results 

Results from the first simulation experiment meant to evaluate efficiency can be 
seen in Fig. 4. The figure shows the average of 5 trial runs for each algorithm per 
map. The information-based approach was significantly faster than the baseline 
approach in 3 of the 4 maps, attaining a lower occupancy grid entropy state over 
the entire time period. For the fourth map, the information-based approach attained 
a small advantage, although both algorithms reach a similar steady entropy state 
quickly. 
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(a) Results from map 3(a) (b) Results from map 3(b) 

 

 
(c) Results from map 3(c) (d) Results from map 3(d) 

Fig. 4 Occupancy grid entropy as a function of time averaged over 5 runs for each of the 
map. In all graphs, red represents the information-based algorithm and blue represents the 
baseline algorithm. A 1σ error envelope is drawn around each line. This figure is best viewed 
in color. 

Results from the second experiment meant to evaluate the accuracy of the 
algorithms can be seen in Fig. 5. Each algorithm was run for 42 trials on the map 
shown in Fig. 3a. Figure 5 depicts the 3 best maps for each algorithm as selected 
by a third party. The information-based exploration was set to favor loop closure. 
This experiment was run with large sensor noise variance, which caused mapping 
failure (duplicated structures, closed-off spaces) that would prevent successful 
navigation. The information-based exploration maps were generally of better 
quality and covered most of the environment, as seen in Fig. 5a. Baseline 
exploration maps encountered mapping failure before covering more of the 
environment than is seen in Fig. 5b. 
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(a) Three best information-based runs 

 

 
(b) Three best baseline runs 

Fig. 5 Best 3 maps from 42 runs each of baseline exploration and information-based 
exploration, terminated after 10 min of runtime 

In addition to the 2 formal experiments, the trajectory of the baseline algorithm was 
compared against the information-based algorithm with various weights given 
loop-closure favorability (k from Eq. 5). Some representative runs can be seen in 
Fig. 6. Each of these runs was terminated after 5 min to increase readability of the 
robot trajectories in the figure. Figure 6a shows that the baseline algorithm explores 
a compact area, as it methodically proceeds to the nearest frontier. Figure 6b shows 
the information based algorithm with equal loop-closure weighting, a typical 
setting for this approach. In this run, the robot explores a medium amount while 
trying to form some loop closures. In Fig. 6c, the loop-closure weighting is set to 0 
so that the robot always chooses the most informative frontier, which is typical far 
away from the previous pose, as it will uncover a lot of information. Figure 6d 
depicts the information-based approach when the loop-closure weight is larger than 
the map information weight. This configuration results in the robot returning to 
previously explored areas to form loop closures. 



 

Approved for public release; distribution is unlimited. 
12 

 
(a) Baseline 

 

 
(b) Information based. Loop closure given equal  
weighting to map information gathering. 

 

 
(c) Information based. Loop closure weight 0. 

 

 
(d) Information based. Loop closure given higher  
weighting than map information gathering. 

Fig. 6 Example trajectories from various settings of loop-closure weight parameters as well 
as baseline system after 5 min of execution 

3.4 Implementation Results 

The exploration system was implemented on 2 different robotic platforms. A 
PackBot was used to map a hospital building at a military and rescue training 
facility. The results can be seen in Fig. 7. The map shows good overall coverage of 
a complex and sizeable area. The exploration system continually prioritized 
frontiers on the fringe of the explored area and mapped the majority of the side 
rooms. This system was also evaluated on other floors in this training facility as 
well as in other test environments with similar results. 
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Fig. 7 Mapping of the second floor “hospital” building (abandoned children’s mental 
hospital), the urban rescue training facility 

The system was also implemented on a Clearpath Robotics Jackal robot. This robot 
was used to explore and map a training structure resembling a police station. For 
this experiment, the scaling factor of the graph entropy was varied. The results can 
be seen in Fig. 8. This experimentation demonstrates the ability for the algorithm 
to be implemented on a second platform from the PackBot. In addition, the data 
collected over a variety of graph entropy scale values demonstrate the behavior of 
the algorithm when loop closures are increased or decreased in priority. Figure 8 
shows that smaller graph entropy scale values resulted in the exploration algorithm 
more quickly reducing the map entropy versus the baseline exploration algorithm. 
However, when the scale value is increased to 1000, the baseline performs better. 
This results from over adjusting the scale value, making the system strongly value 
forming loop closures. As a result, the robot revisits mapped areas at a cost to 
quickly exploring the area. 
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(a) Graph Entropy Scaling=0.25 (b) Graph Entropy Scaling=1.0 

 

 
(c) Graph Entropy Scaling=10.0 (d) Graph Entropy Scaling=100.0 

 

 
(e) Graph Entropy Scaling=1000.0 

Fig. 8 Entropy values while mapping a police station building 
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4. Conclusions 

The information-based exploration system performed at a more efficient and 
accurate level than the baseline proximity frontier selection method. The system 
can be extended to a number of different implementations such as multiple robot 
agents or unmanned aerial vehicles without regard to the details of control or 
sensing. The real-world mapping depicted in Fig. 7 showed that the system could 
be implemented on a currently deployable platform constrained by energy and 
computing power. The system incorporates established research in the area of 
information-based exploration with pose graph smoothing SLAM techniques to 
produce an effective exploration technique. The system is able to create coherent 
maps efficiently and use loop closures to increase accuracy. 
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